找出两个关于复合函数的问题
1.f(sinx)=cos2x+1=1-2sin^2x+1=2-2sin^2x,
设sinx = t,f (t) = 2-2t 2,f(cosx)= 2-2cos 2x = 2(1-cos 2)= 2s in 2x。
2.f(x+1/x)=x^2+1/x^2=(x+1/x)^2-2
设x+1/x=t,(t≤-2或t≥2)
f(t)= t ^ 2-2,即f(x)= x ^ 2-2(x ≤- 2或x≥2)。
设sinx = t,f (t) = 2-2t 2,f(cosx)= 2-2cos 2x = 2(1-cos 2)= 2s in 2x。
2.f(x+1/x)=x^2+1/x^2=(x+1/x)^2-2
设x+1/x=t,(t≤-2或t≥2)
f(t)= t ^ 2-2,即f(x)= x ^ 2-2(x ≤- 2或x≥2)。