如何求这个积分的原函数?
设v=1-u,则s =∫(u+v+ u ^ 2 * v ^ 2)(1/2)du =∫(u+v+ u ^ 2 * v ^ 2)(65438+)
将“=”的两边相乘,然后
S^2=(∫∫(u+v+u^2*v^2)dudv)
=∫dv∫(u+v+u^2*v^2)du
=∫(u^2/2+uv+u^3/3*v^2+c1)dv
=(u^2/2*v+uv^2/2+u^3*v^3/9+c1v+c2)
√(u^2/2*v+uv^2/2+u^3*v^3/9+c1v+c2)
= √[u^2/2*(1-u)+u(1-u)^2/2+u^3*(1-u)^3/9+c1*(1-u)+c2]
PS:不得不佩服楼上的证明,神来之笔!