大学数学专题
y''=e^(2y)
y | x = 0 = y“| x = 0 = 0”
-
让
u= y '
杜/戴
= d/dy(y’)
= d/dx (y ')。(dx/dy)
= y''/y '
-
y''=e^(2y)
udu/dy = e^(2y)
∫udu = ∫e^(2y) dy
(1/2)u^2 =(1/2)e^(2y)+c '
u^2 = e^(2y) + C ' '
y | x = 0 = y“| x = 0 = 0”
0= 1+C ' '
C'' = -1
爱尔兰共和国
u^2 = e^(2y) - 1
dy/dx =√[e^(2y]-1]
∫dy/√[e^(2y]-1]=∫dx
arccos[e^(-y)] + C''' = x
y | x = 0 = y“| x = 0 = 0”
arccos(1) +C''' = 0
C''' = arccos1
爱尔兰共和国
arccos[e^(-y)] + arccos1 = x
e^(-y) = cos (x -arccos1)
-
让
e^y = secz
e^y dy = secz.tanz。阿尔及利亚的域名
dy = tanz。阿尔及利亚的域名
∫dy/√[e^(2y]-1]
=∫tanz。dz/ tanz
=∫ dz
=z + C ' ' '
' ' ' =arccos[e^(-y)] + C ' ' '