大学数学专题

y''=e^(2y)

y | x = 0 = y“| x = 0 = 0”

-

u= y '

杜/戴

= d/dy(y’)

= d/dx (y ')。(dx/dy)

= y''/y '

-

y''=e^(2y)

udu/dy = e^(2y)

∫udu = ∫e^(2y) dy

(1/2)u^2 =(1/2)e^(2y)+c '

u^2 = e^(2y) + C ' '

y | x = 0 = y“| x = 0 = 0”

0= 1+C ' '

C'' = -1

爱尔兰共和国

u^2 = e^(2y) - 1

dy/dx =√[e^(2y]-1]

∫dy/√[e^(2y]-1]=∫dx

arccos[e^(-y)] + C''' = x

y | x = 0 = y“| x = 0 = 0”

arccos(1) +C''' = 0

C''' = arccos1

爱尔兰共和国

arccos[e^(-y)] + arccos1 = x

e^(-y) = cos (x -arccos1)

-

e^y = secz

e^y dy = secz.tanz。阿尔及利亚的域名

dy = tanz。阿尔及利亚的域名

∫dy/√[e^(2y]-1]

=∫tanz。dz/ tanz

=∫ dz

=z + C ' ' '

' ' ' =arccos[e^(-y)] + C ' ' '