找一些微积分的答案!
(2)=∫4/sin?2xdx=2∫csc?2xd2x=-2cot2x+C
(3)=1/4∫(2x?+3)?(1/2)d(2x?+3)=(1/6)(2x?+3)?(3/2)+C
(4)=1/4∫sin?2xdx = 1/8∫(1-cos4x)dx = x/8-sin4x/32+C
(7)=∫sin?x(1-sin?x)?dsinx=∫(sinx)?7-2(sinx)?5+罪?xdsinx=(sinx)?8/8-(sinx)?6/3+(sinx)?4/4+C
(10)=∫√(4-(x+1)?)dx替换x=2sinu-1
=∫2co sud(2 sinu-1)= 2 ∫( cos2u+1)du = sin2u+2u+C
=(x+1)√(4-(x+1)?)/2+2arcsin((x+1)/2)+C
(11)交换?√x=u,dx=3u?杜(姓氏)
=∫3u?sinudu=-3∫u?dcosu=-3u?cosu+3∫cosudu?=-3u?cosu+6∫udsinu
=-3u?cosu+6usinu-6∫sinudu=-3u?cosu+6usinu+6cosu+C
(14)代入x=2secu,=∫2tanu/2secud2secu=2∫tan?udu=2tanu-2u=√(x?-4)-2arccos(2/x)+C
(17)=xln(x?+1)-∫xdln(x?+1)=xln(x?+1)-∫2x?/(x?+1)dx=xln(x?+1)-2x+2arctanx+C
(22)=∫x/(x-1)(x?+1)= 1/2∫(1/(x-1)-(x-1)/(x?+1))dx
= 1/2∫1/(x-1)dx-1/2∫x/(x?+1)dx+1/2∫1/(x?+1)dx
=(1/2)ln | x-1 |-(1/4)ln(x?+1)+arctanx/2+C