大学导数公式表
常用的导数公式如下:
C'=0(c是常数)
(x a)' = ax (a-1),a为常数,a≠0。
(a^x)'=a^xlna
(e^x)'=e^x
(logax)'=1/(xlna),a & gt0和一个≠1
(lnx)'=1/x
(sinx)'=cosx
(cosx)'=-sinx
(tanx)'=(secx)^2
(secx)'=secxtanx
(cotx)'=-(cscx)^2
(cscx)'=-csxcotx
(arcsinx)'=1/√(1-x^2)
(arccosx)'=-1/√(1-x^2)
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(shx)'=chx
(chx)'=shx
d(cu)=cdud(u+-v)=du+-dvd(uv)=vdu+udvd(u/v)=(vdu-udv)/v^2
导数是
微积分中重要的基本概念。当函数y=f(x)的自变量X在点x0产生一个增量δ x时,如果δ x趋于0时函数输出值的增量δ y与自变量的增量δ x之比存在一个极限A,则A是在x0处的导数,记为f'(x0)或df(x0)/dx。
不是所有的函数都有导数,一个函数也不一定在所有点上都有导数。如果函数的导数存在于某一点,就说它在这一点上是导数,否则就叫非导数。但是,可导函数必须是连续的;不连续函数必须是不可微的。
对于可微函数f(x),x?F'(x)也是一个函数,叫做f(x)的导函数。求已知函数在某一点的导数或其导函数的过程称为求导。导数本质上是一个求极限的过程,导数的四种算法也来源于极限的四种算法。反之,已知的导函数也可以反求原函数,即不定积分。微积分基本定理说明,求原函数等价于积分。求导和积分是一对互逆运算,都是微积分中最基本的概念。